

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions

Clean Energy Regulatory Forum: Preliminary Background Paper

Greg Brinkman, Debra Lew, Paul Denholm

May 20, 2012

NREL/PR-6A20-55828

Overview

- Why are we concerned about cycling of conventional generators?
- How much does cycling cost?
- Cycling impacts on the value of renewables to the grid
- How does cycling impact emissions?
- Cycling impacts on the emission benefits of renewables.

Lessons from Western Wind and Solar Integration Study (Phase 1)

WestConnect: Operationally Feasible to Accommodate 30% Wind and 5% Solar – Conditions Apply

- Substantially increase balancing area cooperation
- Increase use of sub-hourly scheduling
- Increase utilization of transmission
- Enable coordinated commitment and dispatch over wider regions
- Use forecasts optimally in operations
- Increase flexibility of dispatchable generation (e.g. thermal units, storage)
- Commit additional operating reserves as appropriate
- Implement/expand demand response programs
- Require wind to provide down reserves.

Source: DOE

Increasing RE Penetration

What Happens to Emissions and Wear and Tear Costs?

Source: Western Wind and Solar Integration Study, 2010.

Adding wind and solar generation leads to more startups and ramping at existing thermal units, especially coal.

Boiler Corrosion Fatigue

Source: Steve Lefton, Intertek APTECH, with permission.

Startups and ramping can lead to fatigue on various parts of a generator due to thermal stresses (temperature change).

Lessons from Previous Studies

- Renewable penetration leads to increased cycling (off/on) and load following (varying levels of output) operation at fossil-fueled units
- Cycling and load following can lead to increases in operation and maintenance costs due to fatigue on parts
 - How does this affect the cost of integrating renewables?
 - How does this affect the emissions impact of integrating renewables?

How Much Does Cycling Cost?

Cycling Cost Estimates

- This section is based on work done by Intertek APTECH
- Cycling (on/off) and ramping generators leads to temperature changes that can cause materials to crack and fail
- APTECH estimates the cost of these repairs per cycle or ramp
 - Including cold, warm, hot starts, and load following (ramping).

APTECH Methods to Estimate Cycling Costs

- APTECH has analyzed over 400 units worldwide to estimate impacts of cycling
- 170 units met criteria for inclusion in database to estimate typical costs
 - U.S. units, recently analyzed with newest methods.

Top-down

- Regression analysis
- Filter all maintenance costs for potential cycling-related repairs
- Include all historical cycling information and maintenance cost timing.

Bottom-up

- Detailed analysis of 7-10 years of work orders
- Specific analysis of all major plant components
- Operator interviews
- Used to confirm top-down analysis.

Cold Start Costs (Per MW Capacity)

Coal start costs are highest, but gas startup costs still significant.

Cold Start-Forced Outage Rate Impacts

Cold Start EFOR Impact Lower Bounds-with Outliers (added % to one year's EFOR)

Fatigue caused by startups leads to more unplanned unit outages.

Baseload Operation and Maintenance Costs

Baseload (not considering cycling) O&M is higher for coal units.

Load Following (Ramping) Costs

Load following costs are much lower than startup costs, but they happen more frequently.

Re-analysis of Western Wind and Solar Integration Study Phase 1 Results – Cycling Impacts on the Value of Renewables to the Grid

Cost of Cycling in Renewable Scenarios

- GE re-analyzed the dispatch results of the Western Wind and Solar Integration Study (WWSIS)
- APTECH startup and load follow cost estimates were added to the original cost estimates
- Value of renewable energy was re-calculated.

Number of Cold Starts Per Year

Cold starts of coal units go up significantly, but the total number of cold starts of coal units is still small.

1	Coal - Small Sub Critical
2	Coal - Large Sub Critical
3	Coal - Super Critical
4	Gas - CC
5	Gas - Large Frame CT
6	Gas - Aero Derivative CT
7	Gas - Steam

Number of Ramping Events

Ramping of coal units goes up significantly while there is little change for gas units.

1	Coal - Small Sub Critical
2	Coal - Large Sub Critical
3	Coal - Super Critical
4	Gas - CC
5	Gas - Large Frame CT
6	Gas - Aero Derivative CT
7	Gas - Steam

Operating Costs – Lower Bound Cycling Cost

Additional startup costs make up a very small portion of total costs (mostly fuel).

Operating Costs – Upper Bound Cycling Cost

Even in the upper bound case (detailed cost inputs are confidential), additional startup costs are a small fraction of total costs.

Conclusions

- WWSIS1 found value of wind to be ~\$85/MWh
 - Highly sensitive to gas price assumptions
- Lower bound cycling cost estimates would reduce that value by 0.1% to 0.7%
- Upper bound cycling cost estimates (not shown in this presentation and covered by NDA) would reduce that value by 0.6% to 2.4%
- Value of wind and solar is reduced by \$0.06 to \$2.00/MWh, depending on assumptions.

How Does Cycling Impact Emissions?

Estimating Cycling Impacts on Emissions

- NREL analyzed historical data from ~95% of fossil-fueled generation in the U.S.
- Estimates were made for emissions (CO₂,
 NO_x, SO₂) impacts due to:
 - Part-load operation (operating significantly below rated capacity)
 - Startups (cycling off/on)
 - Load following/ramping (changing generation levels).

Wind Impacts on Emissions

Previous studies:

- Hypothesized that emission reductions from wind are not as high as expected due to unit cycling
- Some evidence exists, but no studies have modeled system from generator properties through dispatch.

Western Wind and Solar Integration Study (WWSIS) (Phase 2 Plan):

- Understand interaction between wind/solar penetration and thermal unit cycling
- Step-by-step approach to emissions
 - Gather unit-specific data on emissions
 - Characterize impacts of part-load operation, ramping, startups on existing fossil-fueled generators
 - Include these properties in unit commitment and dispatch modeling.

EPA Continuous Emission Monitors (CEMs)

 Hourly emission measurements on almost all fossil fuel units in the U.S.

- Use CEM data to find unit-specific data
 - Heat rate (and CO₂ emissions) as a function of generation
 - Emissions (NO_x, SO₂) as a function of generation

Data from year 2008.

Heat Rate and Emission Curves

- Local linear fit for every unit
- Eliminate units with obviously clustered data caused by:
 - Installation of pollution control equipment during year
 - Part-time operation of pollution control equipment
 - Combined cycle units in various modes of operation.

EPA Continuous Emissions Monitor data, 2008

Startup Emissions

- Add up residuals from all hours prior to and following a startup until unit reaches its minimum generation level
- Integral between the predicted and actual NO_x curves
- Ramping emissions quantified in similar manner.

EPA Continuous Emissions Monitor data, 2008

Results (Heat Input or CO₂)

Percentage increase in heat rate at 50% of capacity.

Coal	Gas CC	Gas CT	Gas steam
6%	15%	17%	6%

Results (NO_x)

Percentage increase in NO_x/MWh at 50% of capacity.

Coal	Gas CC	Gas CT	Gas steam
-3%	29%	16%	-19%

Results (SO₂)

Percentage increase in SO₂ emission/MWh at 50% of capacity.

Coal (controlled)	Coal (uncontrolled)
-20%	4%

Startups and Ramping

Startups

Ramping

	CO ₂	NO _x	SO ₂
Coal	1.2	1.0	0.8
Gas CC	0.3	6.1	n/a
Gas CT	0.4	1.8	n/a
Gas steam	0.9	0.0	n/a

	CO ₂	NO _x	SO ₂
Coal	0.03	0.08	0.07
Gas CC	0.01	0.08	n/a
Gas CT	0.01	0.01	n/a
Gas steam	0.01	0.08	n/a

Startup and ramping emission penalty listed in hours of equivalent full-load operation. Coal units emit less NO_x during startup relative to full-load operation. Ramping leads to far less emissions compared to startups, but occurs more often.

Re-analysis of Western Wind and Solar Integration Study Phase 1 Results – Cycling Impacts on the Emission Benefits of Renewables

Emission Impact of Cycling with Renewables

- NREL re-analyzed the dispatch results of the Western Wind and Solar Integration Study (WWSIS)
- Startup, part-load, and ramping emission estimates were added
- Emissions avoided by wind and solar generation were estimated
 - Effects of part-load operation, startups, and ramping were separated.

WWSIS Re-analysis

- WWSIS1 was re-analyzed for startup, ramping, and part-loading emissions of NO_x and CO₂
 - Original dispatch used.
- Generic emission rates (specific to WECC) applied by category to previously modeled dispatch
 - Slightly different than the U.S. averages shown here coal plants emit more and gas plants emit less in WECC
 - Coal part-load NO_x emissions benefit bigger in WECC.

WWSIS Re-analysis

- Numbers are avoided emissions per MWh displaced generation
- Numbers with +/- are changes to original numbers due to cycling, part-loading, and ramping
- Numbers in parentheses are changes in percentage terms.

	NO _x benefit of renewables (lbs/MWh)	CO ₂ benefit of renewables (tons/MWh)
Assuming flat emission curves	0.422	0.499
+Considering part- load emission rates	+0.031 (+7.3%)	-0.006 (-1.3%)
+Considering startup emissions	-0.006 (-1.3%)	-0.001 (-0.3%)
+Considering ramping emissions	-0.011 (-2.7%)	-0.001 (-0.2%)
Total	0.436 (+3.3%)	0.490 (-1.7%)

Conclusions and Future Work

- Startups, part-load efficiencies, and ramping have a relatively small impact on total cost and emissions
 - Compared to determining which unit is on the margin.
- Cycling may have significant impacts at specific times or places, or for individual generators
 - Specific generators have significantly higher cost and emission impacts from cycling and load following
 - Identifying these generators and addressing the issues could be important.
- How does wind/solar impact emissions?
 - Type of unit (and emissions performance of unit) on margin more important than "cycling"
 - WWSIS2 will use unit-specific data for these parameters.

WWSIS Phase 2 (Follow-up Work)

- Obtain better data for wear and tear costs of fossil-fueled units due to on/off cycling and load following
- 2. Examine **emission impacts** of fossil-fueled units due to on/off cycling and load following
- 3. Optimize unit commitment and economic dispatch with these inputs and examine impact of increasing penetrations of wind and solar on thermal units
- 4. Examine mitigation options to reduce costs of thermal unit cycling and ramping.

Scenarios for WWSIS2

Renewable Penetration (Annual) by Energy	High Wind	High Mix	High Solar
11%	WECC TEPPC 2020 8% wind 3% solar		
33%	25% wind 8% solar	16.5% wind 16.5% solar	8% wind 25% solar

Use NREL ReEDS model to expand generation fleet subject to geographical and electric power system constraints (and select regional distribution).

- Solar consists of 40% CSP and 60% PV
- CSP has 6 hours of storage.

High Wind (25% Wind, 4.8% PV, 3.2% CSP)

High Mix (16.5% Wind, 9.9% PV, 6.6% CSP)

High Solar (8% Wind, 15% PV, 10% CSP)

Questions?

Follow-on questions:

Greg Brinkman

gregory.brinkman@nrel.gov

303-384-7390